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Autoresonance of coupled nonlinear waves
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Adiabatic passage of weakly coupled nonlinear waves with space-time varying parameters through reso-
nance is investigated. Slow evolution equations describing this wave interaction problem are obtained via
Whitham’s averaged variational principle. Autoresonant solutions of these equations are found and, locally,
comprise adiabatically varying quasiuniform wave train solutions of the decoupled problem. At the same time,
the waves are globally phase locked in an extended region of space-time despite the variation of the system’s
parameters. Conditions for entering and sustaining this multidimensional autoresonance are the internal reso-
nant excitation of one of the coupled waves and sufficient adiabaticity and nonlinearity of the problem. These
conditions have their origin in a similar adiabatic resonance problem in nonlinear dynamics. The theory is
illustrated by an example of the autoresonance in a system of coupled sine-Gordon equations.
[S1063-651%98)00503-0
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I. INTRODUCTION ing weaklynonlinear cases only.
Recently, a further theoretical progress was achieved in

Resonant interactions of waves with adiabatically varyingshowing the existence of the autoresonant solutions for a
parameters are of interest in plasma physics, nonlinear oparge class of drivenfully nonlinear waveg9]. A typical
tics, acoustics, etc. The simplest example is the linear modéxample is the driven sine-Gordon equatithve case consid-
conversion in space-time varying media, taking place wher@red in detail in Ref[9])
an externally launched eikonal wave passes a region where it
resonates with another weakly coupled linear wave. The sec-

ond wave is excited in the resonant region, but then deWherec and w, may vary adiabaticallyz<1 is a small

couples from the original wave because of the nonuniformitydimensionless coupiing parameter, andb cosg ) is a
and/or time depe_ndence of the bagkground and the t\_/\/oiven eikonal driving (pump wave éndb(x 1), W(x ,3 and
waves propagate independently outside the resonant regloa{. (x.t) are the amplitude, phase, and pﬁaée médulation of
The linear mode conversion has been studied in the past in®™ ! '

P : the pump, respectively. One also assumes thathe fre-
the context of waves in ionospheric plasnja$ and, more uencyw(x,)= — g, the wave vectok(x,t)=, . and

recently, is used as one of the principal plasma heatin re adiabatically varying functions of space-time. It was
mechanismg2]. Mathematically mor mplex than linear . . S :
echanismg2]. Mathematically more complex tha ca shown in Ref.[9] that, under certain conditions, the au-

mode conversion but, nevertheless, very important in appli= e v
resonance in this driven system proceeds as the pump wave

Ugt— C2Uyy+ 3 sinu=sv, )

cations, are three-wave resonant interactions in adiabaticalﬁs) th " St d a line in th
varying media[3]. In this case a triad of waves interacts ¥ passes the space-time regi@strip around a line in the

; g . ; described by the left-hand side of E@). The theory of Ref.

in terms of the wave amplitudgsonlinear coupling term, . :

( plitude b [9] was not limited to Eq(1), but described a larger class of
Recently, it was shown that if, in addition to the variation ofdr'v_e? mlIJItld_lm_er;smnal nonlinear systems given by the
the parameters, one includes the nonlinear dispersion of thgariational principie

tering a newautoresonantregime in the mode conversion Sy J J L dx dt|=0, 2
and three-wave interaction proces$d$ In autoresonance,

region of space-time. The broadening of the resonant region

is accompanied by an automatic self-adjustment of the wave L=L(u;,uy,u,q)+evu, (3
between the waves despite the variation of system’s paranandq(x,t) represented a set of adiabatically varying param-
eters. The autoresonance of nonlinear waves is the spaceters, whilev was the aforementioned eikonal pump wave.
ics, where, in early studies, the phenomenon was used iaquation for the daughter wavgx,t):

particle accelerator§5] and, recently, in other dynamical

[8]. The autoresonance is well understood in general dynami-

cal systems with one degree of freedom. Nevertheless, thEhe progress in the theory of the autoresonance in systems

resonantly in a localized region of space-time via a quadratié*:t) Pland where it resonates with the linear daughter wave
while, typically, the decoupled waves are viewed as linear:

resonantly interacting waves, there exists a possibility of en-

the coupled waves tend to stay in resonance in an enlarggghere the Lagrangian was of the form

amplitudes, allowing the continuation of the phase locking

time generalization of the autoresonance in nonlinear dynam-agrangian (3) yields the following variational evolution
problemq 6], as well as in the atomi] and plasma physics d(Ly)+dx(Ly ) —Ly=eb cosy. (4)
wave autoresonance theory of Ref] was limited to study- described by Eq(4) was achieved by developing the aver-
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57 AUTORESONANCE OF COUPLED NONLINEAR WAVES 3495

aged variational principle for studying the autoresonant wave=s a_exp(ind) and V=X=,b, exp(ing), substituting these

interactiong 9]. Nevertheless, this theory was still limited to expansions into the right-hand side of E¢), and leaving

the prescribed pump wave case only. only then=1 terms for simplicity, i.e., focusing on the fun-
In the present work we shall include the self-consistentdamental resonance problem, we obtain

autoresonant evolution of the pump wave. We shall assume

that the complete pump-daughter wave system is described d(Ly)+dx(Ly ) —Ly=geb cog g+ i),

by the variational principl€2), but nowv is a dependent

field variable, and (M, ) +3x(M, )—M,=zga cog 6+ b,), (7
L=L(ug,uy,u,q)+ M(vg,vx,0,1) +euv. ) wherea, b=|ay|,|b;|, and 8y, ¥=Arg(a;,b;). Note that

each of the equations in E{) has the same form as E@)
studied in Ref[9]. Therefore, the solution of the coupled
system can proceed along the lines similar to those outlined

Here M (v¢,vy,v,r) is the Lagrangian of the unperturbed
pump wavey(x,t) is a slow parameter, and the interaction
term euv describes a weak linear coupling. Lagrangih

i : : 2 in that work.
yields the following coupled evolution equations: We seek globally phase locked solutions for the coupled
A(Ly)+ (L, ) —L,=¢v, waves, i.e., write 6= ¢(x,1)+0O(X,T) and ¢=@(x,t)
‘ X (6) +W(X,T)=6—-0+WV¥, whered is the rapidly varying part
G(M, )+ 3 (M, )—M, =gU of the phasegassumed to bthe samdor both waves, which
t Ut X Uy v .

is the phase locking assumptiprvhile ® and ¥ represent

Our goal is to find autoresonant solutions in this system, i.e.boundedmodulatlons. We shall also assume that the fre-

a situation when an externally launched pump wave eXCiteguaernng;,r f/);?r:rc]j tr;i(\;vz\r/ﬁo\(l)?ﬁt?/{vii%( :ﬁ;c&f'gi?”\gt';h
the daughter wave as they resonate inside the space-tine y varying ’

i D — 12y, 1
region of interest, while after the excitation the waves propa-and scale withx and t as O(c™,"™) and ¥

— 1/2, 1/2 H
gate phase locked in an extended region of space-time. T E\P(S X,e 1) (see below Note, at this stage, that we

self-consistent description of the evolution of the waves in ave introduced th_ree phasgs®, and¥, instead of the two
original angle variableg) and . Therefore, we have the

the autoresonance and the study of the stability of the au: q £ addi dditional traint. We shall thi
toresonant interaction are the main targets of this work. Ol:t;ee om or adding an additional constraint. Vve snall use this
reedom later. Now, we further exploit the similarity be-

presentation will be as follows. In Sec. Il we shall apply the . . . .
averaged variational principle idea in deriving the slow evo-veen the equations in EQY) in the self-consistent problem,
nd Eq.(4) for the prescribed pump case. The latter was

lution equations for studying the autoresonance in thénd E9. . L o
coupled phase locked daughter-pump wave system. T %tudled in Ref[9] via the averaged varlatlt_)nal prl_nC|pIe, and
boundary conditions and the process of trapping into th ere, for completeness, we present a br_|ef d_erlvat|on of the
resonancéthe initial excitation stagewill also be discussed .SIOW autoresonant evolution _eq_uatlons n th's theory: The
in Sec. Il. Section Il will deal with the autoresonant solu- |d<_aa was based on th_e p035|b|l|_ty .Of repIgcmg the original
tions of the slow evolution equations. An application of ourprlnmple (2) by an equivalent variational princip[d.0]

theory to the case of coupled sine-Gordon equations and nu-

merical examples will be presented in Sec. IV. Finally, Sec. ) f f (LydX dT| =0, €5)]
V gives our conclusions.

where (LY=(27)"1f2"L d¢ is the Lagrangian averaged
Il. SLOW EQUATIONS FOR PHASE-LOCKED WAVES over one period of the fast phase variable, holding the slow

The averaged variational principle for studying slow VariablesX andT fixed. To first order ire,

modulations of nonlinear waves was developed by Whitham
[10], and Ref[9] comprised an application of a similar ap-
proach to driven autoresonant waves. Many details of thyhere the zero order averaged Lagrangian

developments for studying the autoresonant evolution of the

complete daughter-pump wave system are similar to those of LO=L%A k+0,,0—0,,q) (10

Ref. [9]. Thus we shall skip these details in the present

theory. We proceed by introducing the two-scale representds calculated by using the uniform wave train solutions of the
tions [9,10] of the solutions of Eq.(6), i.e., u(x,t) unperturbed nonlinear wave problem with constant param-
=U[6(x,t),X,T] and v(x,t)=V[(x,t),X,T], where X eters having the same values as in our exact problem at given
=gx andT=e¢t (¢ is viewed as the largest small parameterX andT. Note thak andw in Eq. (10) are those of the pump

in the problen), and we assume the periodicity bfandv ~ wave, whileA is the energy variable of the wave trgi8].

with respect to the fast phase variabtesnd . The rationale  The small terma in Eq. (9) involves space-time derivatives
beyond these representations is the expectation of havir@gf the slow parameters of the wave train solution and need
solutions of the coupled problem which, locallgn the fast not be specified. An approximate form of E(L0), L°
variation scalg comprise quasiuniform wave train solutions ~L°%(Ak,®,q) +LY(Ak,0,0)0,—LY(Ak,©,0)®, was

for the decoupled waves, but, at the same time, involve adiaised in Ref[9] in the variational principle. However, be-
batic modulations on the slow scalX,) because of the cause of the above-mentioned special scaling@ofvith x
presence of the weak coupling and the adiabatic variations afndt, we have@x,tva(sl/Z) and, toO(e), we must also

the system’s parameters. By expanding in Fourier sedes, include the terms witt@i,@t2 and 0,0, in approximating

(LY=L +eab cog O + ,— ¢o) + a, 9
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L% in the variational principle. Alternatively, in this work, we the pump wave reaches the resonaftbe initial excitation
shall postpone the expansion until analyzing the stability ofegionin the following) one can neglect the interaction terms
the variational evolution equatiorisee Sec. I)l. This is an  in Egs.(15) and(16) for the pump wave, i.e., write
important improvement of the previous theory. The averaged

Lagrangian(9) is a function ofslowvariables and parameters M gt— M ﬁx= 0, (18
A, 0, k, o, andq only. Therefore, by taking the variations in
Eq. (8) with respect to the dependent field variableand®, M3=0. (19

we obtain the following system of slow evolution equations:
Next, we use the above-mentioned freedom of prescribing
one of the phaseg, ¥ or 0, and set¥ =const in the initial
excitation region, so, in Eq$18) and (19),

L, —L) =—sabsin®, (11)

L8=sapb cos®+y, (12)
0_ O
where® =0 + 65— iy, while y [similarly to @ in Eq. (9)] is MT=M7(B.k,w.r). (20
a small function involving the space-time derivatives of vari-
ous slow parameters in the problem, and plays a negligibl
role in the autoresonan¢@] and, thus, will be omitted in the
following. Finally, note that.® and —L? in Egs.(11) and
(12) are the action and the action flux densities of the wav
train solution for the daughter wayé&0], but one evaluates
these objects at slightlghiftedlocal  andk values associ-
ated with the pump. : oo L i
Now we generalize the theory to include the self- \é\gggn t?eegi%l;mp wave iprescribedin the entire initial ex
consistent evolution of the pump wave. As mentioned above, Now we discuss the initial excitation of the daughter

each of the two equations in E) has a form similar to Eq. wave. The latter is described by Eq#3) and(14), where, of

214)'a?no}h§00th:ror:apgr’] tg(e; toE?a i;l)aﬁ?jrz 1bz()a r%?éé:g?:r:y course, one cannot neglect the coupling term. Nevertheless,
pa W evolut quati ' ' if one starts at the boundary, where the amplitude of the

to the same order, Eq¢7) for the self-consistent p“’b'e”.‘ daughter wave is small by assumption, one can use the

"hbove-mentioned decoupled pump wave solution in solving
Egs. (13) and (14) in the initial excitation region, so the

g)ne can identify Eq9.18) and(19) with the usual system of
Slow evolution equations for the energy dendityand phase

¢ of the adiabatically varying wave train solution for the
pump wave 10]. This is a pair of coupled partial differential
equations(PDE’s), and we shall assume that the solutions
B=B(x,t), and ¢=¢(x,t) [and, therefore, als@=k(x,t)
and w=w(x,t)] of these equations are known. In other

equationgcompare to Eqs(11) and(12)]

L0 — 19— _cabsin®, 13 initiql ex_citation stage of the daqghter wave reduces to that
ot th T (13 studied in Ref[9]. It was shown in that work that the solu-
LO=cab cosd (14) tion for the daughter wave in this region is as follows. Start-
AT )

ing at the boundary, the driven daughter wave enters the

0 _\mO — . strong phase trapping stage, in which its amplitude is still
Mo =My =eab sin @, (15 small, but the phase differenc@=0 -V (mod 27) be-
Mg:sabB cosd (16) comes near either 0 ar. This phase locked small amplitude

(linean driven wave propagates until it reaches the resonance
where d=0— W, while L°=L°(Ak+0,,0—0,,q) and line in the (,t) plane determined by the equation
MP=MO(B,k+ ¥, ,0—W¥,,r) are the averaged Lagrangians 0

of the decoupled daughter and pump waves, respectively, Dlw(x,1),k(x,1),q(x,1) ]~ La=0. (21
andB is the energy variabléhe analog ofA) parametrizing ) ) ) ) ) L

the wave train solutions for the decoupled pump wave. Furtiere D is the linear dispersion function characterizing the
thermore, we have omitted the irrelevant small tefie ~ SMall amplitude daughter wave in the decoupled problem,
analogs ofy in Eq. (12)] in the right-hand side of Eq¢l4)  and is evaluated at local values of the frequency and wave
and (16) (see the remark in the previous paragiaahd in- vector of the adiabatically varying pump wave. ThL_ls, indeed,
cluded, at this pointd, andyy in the definitions o® andw.  the daughter and pump wavessonateon the line given by
Finally, we observe that Eq&L3) and (15) yield the conser- Eqg. (21). In the vicinity of this resonance line an efficient

vation law (the Manley-Rowe relation excitation of the daughter wave takes place and, under cer-
tain conditions, the daughter wave may enter the autoreso-
(|_S)+ Mg,)t—(LEJr ME)X:O' (17 nant interaction stag€9]. As the amplitude of this wave

increases beyond the resonance line, one may also expect a

At this stage, we discuss the boundary conditions. Theviolation of the prescribed pump wave assumption. Our next
latter must be consistent with the slow evolution and phasgoal is to remove this assumption, i.e., to consider the full
locking assumptions. We shall be focusing on theernal  system of Egs.(13)—(16) in the autoresonant interaction
daughter wave excitation problem, i.e., on the situation wherstage. Note that the amplitudes and phases of the two waves
a large amplitude pump wave is launched at the boundary adre already known on the resonance line, so one can view
the region of interest, while the amplitudeof the daughter this line as anew boundaryn the problem. Also, beyond the
wave on the boundary is negligible. Thenwill remain  linear resonance line, the daughter wave amplitude is large,
small until the daughter wave resonates with the pump waveand one can remove th@(e) interaction terms in Eqg14)
Consequently, in the region between the boundary and untdnd (16) in studying the autoresonant evolution stage.
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. AUTORESONANT SOLUTIONS requires integration along the characteristics originating on
the boundary of the autoresonant regitive linear resonance
ﬁne). After finding w andk we determineA andB via (30)

and (31). These solutions can be also used in checking the

splitting thesmoothaverages fronsmall oscillating compo-  2Ssumption of the smaliness f via, say, Eq(22). Finally,

nents. By separating the averaged and the oscillating parts {6 0Pserve that in contrast to the multidimensional case,
Egs.(13)—(16), we have finding the averaged energy densitiés and B in one-

L o o dimensional situations involves solutions of algebraic equa-
(L S;Aat_ L EAgX)Azﬁa_ sab @, (22)  tions only. Indeed, suppose one treats a statiof@gstant
w) problem, where the slow parameterandr depend orx
(M 059~ M %,9,)B= B, +eaB @, (23 only. Then Eq(17) yields, L 3+ M ¢=const. The part of this
equation averaged over the autoresonant oscillations in com-
(E,Aﬁt—:gAﬁx)*L_?\, (24) bination with Egs{(30) and(31) comprise a set of algebraic
equations forA, B, andk as functions of.
(M_S,Bﬁt— M—Esﬂx)‘lT“ M g (25) _ As the final step in our theory, we _proceed to the oscillat-
ing autoresonant components described by E28)—(29).
and Since, at this stage, the adiabatic avera§jesnd B are al-
_ _ _ _ _ ready known, these equations comprise a set of homoge-
(LO0d— L a0 A—(LO 92+ L 202—2L2,5,0,) 50 neous, linear, first order PDE’s with slowly varying coeffi-
— cients. Therefore, the oscillating components can be found
=—cab(60 - o¥), (26)  py using the usual multidimensional WKB approximation
— — — — [11]. We shall not describe the details of this method here,
(M 250:—M Qgdy) SB— (M ,aF+ M Qd5—2M 2,90 8% and focus only on finding the frequenayand the wave
— vector « of the autoresonant oscillations. To lowest order in

In this section, we seek autoresonant-type solutions of th
evolution equationg13)—(16) beyond the resonance line,
i.e., write (A,B,0,¥)=(A,B,0,¥)+(5A,45B,50,6V),

=ga b(60—6V), (27) the WKB approximation, Eq926)—(29) become
(L% 0 — L 2,0,) 60 ~L 3 \6A, (28) ISA6A— C250 = ca b( 90 — V),
(M 25— M Pgdy) 8% ~M 2B, (29 iSPSB— CPSW = — £@ (50 — SV),

_ — (34
where(---) means evaluations at, k, A, andB; the average
phase differenc@=0—"¥ is assumed to be small, ag),

=L2—L2 andBy=Mp,—M 2. Next, we use the freedom
of choosing one additional constraint on the variakie®,

and ¥ beyond the resonance line. We recall tHais con- a_ 70 0 b . 0 0 a_70 .2
stant on the resonance lirfthe new boundary in the prob- whereS*= vl jpt &l kar S=vM gt kMg, C=L v

70 2 0 b_png 0 .2 0 2 0 a
lem), and impose the constancy & in the autoresonant +£‘ék" +2V’EL M&OC =M ooV T Mg+ 2vkM 4 R
region, so, from Eq(25), =L aa andR°=M . System(34) yields the local disper-
sion relation forv and «,

iS50 + R?6A=0,

iSPSW +RPSB=0,

M 9=o0. (30) _
Da3DP+ea b(D3+DP)=0, (35)
This relation can be viewed as an algebraic equation defining
B=B(w,k). Furthermore, t®(¢), Eq. (24) yields where D®P=C2P— (S2P)2/R2P One can use this relation
_ for evaluatingr and « in the region of interest by integrating
L8~o0, (31)  along the characteristidthe rays of the WKB theopyorigi-

__ nating on the linear resonance line. Note that the dispersion
which gives the lowest order approximation foA  relation(35) is real, yielding real ray equations and, in turn,
=A(w,k). On the other hand, by adding Eq&2) and(23), real solutions fory and « in the parts of the autoresonant

one obtains the averaged Manley-Rowe relation region accessible by the rays. This guarantees the stability of
_ - _ _ the autoresonant oscillation8A, 6B, 80, and 8V in the
(LY 10— L 2Ad) A+ (M 29,— M 050,)B= B+ By . accessible region. Note that our stability analysis simplifies

(32 significantly in one-dimensional, stationarfconstant w)
. . L. = — problems(we have discussed the question of findkgndB
This equation, upon substitution 8f(w,k) andB(w,k) de- iy this situation earlier In these problems, we seek time
termined above, can be viewed as a PDEd@ndk, and, in  jndependent solutions for the oscillating autoresonant com-
combination with the consistency condition ponents and, thus, set=0 in Eq. (35), yielding a simple
okt 0y w=0, (33  Stability condition ga b(d®d®) ~(d®+d°)>0, where d?
=L —(LY)YLS, andd?=M O, — (M 25)%/M §5. Also, in

yields a complete system of two first order PDE's for slowly stationary problems, our original system of slow evolution
varying o andk in our problem. The solution of this system equations reduces to a set of ordinary differential equations
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(ODE’s), and we shall use this simplified system in the nu- L%=¢aub cos®, (43
merical applications in Sec. IV.

Finally, we discuss the validity conditions for our ap- MO =—zgabsin®, (44)
proximations. We observe that, if one denotesobfjo<<1)
the dimensionless adiabaticity parameter characterizing the M 9=cab, cos®, (45)

space-time variation af andq in the problem, therB, ,, in
Eq. (32) are of O(o). Then Eq.(32) shows that the adiaba- where, for the sine-Gordon cape,
ticity parameter characterizing andk and, in turn, A andB
are also of0(o). As the result, Eq(22) [or Eq.(23)] yields LO=(w?—c%k3)"202-A,
®~0O(a/e). Therefore, our assumptich<1 requires M°=(w2—czk§)1’2Jb— B,
ole<l. (36)

koa=k+0,, k,=k+¥, and

On the other hand, according to E85), v and k scale as
9 105G 2P =8w, pm HE(m/2,k3P) — (1= k*P)F(m/2,k3P)],

v,k~0(e'?), (37 (47
(this is the characteristic autoresonant scaling mentionefPrmally, are the actions of the nonlinear oscillators of ener-
aboveg. Then, from Eqs(34), gies A and B described by the equationg,= w2 sinu and

U= 3 sinu, respectively[12]. FunctionsE and F in Eq.
; (47) are elliptic integrals of the first and second kind, while
(88 x2=0.5(1+A/w?) and k"=0.5(1+B/w?2). Furthermore

and the smallness af appears to guarantee the validity of [9), in Egs.(42~(49),
\(;glri;gs/toofrder expansions in powers &\, and 6B, i.e., the (a,b)=4g"2(1+g) %, (48)

AA~ (SR SO ~c2 5B~ (SPIRP)SW ~ &1

where g=exd —(#F'/F)] and F'=F(#/2;1— k), and one
substitutesk = x? or «® in evaluatinga or b, respectively.

a,b a,b H
Nevertheless, these conditions also require a sufficient norf.'® Parameters™” (0= «*°<1) characterize the degree of

linearity. Indeed, the functions®" in Eq. (39) involve first the nonlinearity of the daughter and the pump w&@sand

derivatives of the Lagrangians with respect to the energ?ma”."valges i:/orrespond o the linear caatiere the wave
densitiesA andB, while R*? are the second derivatives of amplitude is %), while, ask— 1, one approaches the soli-

the Lagrangians. But, in linear problems, the Lagrangian idary wave solution of the sine-Gordon .equatlor?.

proportional to the energy density, §° vanish and one Next, we observe that the algebraic equati¢43) and
cannot satisfy Eq(39). Therefore, in the autoresonance, at (45) allow one to expresk, andkb;’f)aA' B, and cosb, i.e.,
least one of the waves must be sufficiently nonlinear. ThigVe Write explicit relationsk, ,=G*"(A,B,®,x), where the
completes our discussion of the self-consistent autoresonafP™ X dependence enters because «f=wy(X). Then,

0_0 0_ 0
evolution and the stability of the complete pump-daughterSince. formally,L"=L"(k,,A) and M"=M"Tky,B, wp(x)],
wave system. one can rewrite Eqg42) and(44) as

SAIA~S?(ARY) <1, 6B/B~S’/(BR%)<1. (39

LO+LOGHA 4L (GEB+G3dD, +G?2
IV. EXAMPLE: WEAKLY COUPLED SINE-GORDON (Liat LG DA LGB CoPut Gy
EQUATIONS =gab sin d, (49

In this section we illustrate our theory by studying a one- 0 0n~b 0/ /b b b 0
. ; . + + + +GY+
dimensional example of the autoresonant evolution of the (Miat MG e)Bit Migd GaAt G o Pyt G + Mo

solutions of two coupled sine-Gordon equations =—gab sin P. (50)
U~ C2Uyyt @ sinu=sv, (400 These two equations, in combination with
vtt—czvxx+w§(x)sin v=geu, (42) ®,=k,—k,=G*A,B,®,x)—G(A,B,®,x), (51

wherew, is constant, whilav,(x) is a slowly varying func- comprise a complete set of ODE’s fér, B, and®.

tion of position. We shall consider the boundary value prob- Now we proceed to our numerical examples. First, we
lem in which only the pump wave is excited at some point illustrate the possibility of excitation of spatially autoreso-
x; and has a form of a wave trainv(Xq,t) nant solution for the daughter wave in the case when one
=V[(x1,1),B(Xx1)] with a given time dependence neglects the nonlinearity and the coupling in treating the
(X1,t)=C— wt and energy paramet&(x,). The daughter pump wave, i.e., replaces the system of equati@® and
wave, in contrast, is assumed to be negligiblexat The  (41) by

slow evolution equation§l3)—(16), in this one-dimensional ) .

problem, become Ut~ CoUyy T w3 SINU=¢€v, (52

L2 =zab sin®, (42) Vit~ C20gt+ @ E(X)v=0. (53)
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tem settles in the spatially autoresonant regime, where the

0(:)';_ @) 512l | phase mi_smatch remains small and oscill_a(thgse are the_
| : 1M characteristic stable autoresonant oscillations described
0 Zos pump wave 1 above around a slowly varying average value. The autoreso-
1000 0 1000 | nance effect can be also illustrated by comparing the wave

X vector of the pump wavekE 1+ ax) to that of the nonlinear

daughter wave given by the local dispersion relatlo&
=0. We make this comparison in the small frame in Fig.
. , . . 1(a). One observes that beyomwd- — 500, the wave vectors
-1000 -500 0 500 1000 of the two waves remain almost the same, i.e., the amplitude
COORDINATE, x . :

of the nonlinear daughter wave self-adjusts so that the wave
stays in an approximate resonance with the pump. Finally,
the approach ok® to unity indicates the transition to the
limiting square wave solution for the daughter wavexas
increases. In order to test our adiabatic theory we also per-
formed direct numerical solutions of E(p2) with the pre-
scribed eikonal pump wave. We used a standard spectral
method[13] in our numerical tests, and confirmed the accu-
racy of the method by doubling the number of harmonics
used in the calculations and by reducing twice the spatial

0 . . . integration step. We used matched boundary condition for
-1000 -500 0 500 1600 i.e., U(xq,t)=sv(xq,t)/[ w>—c?k?(x1) — @ 2]. This bound-
COORDINATE, x i 2

ary condition guarantees smooth excitation of the daughter
wave and corresponds to the case of a vanishing solution if
dne moves further away from the linear resonance line, i.e.,

mismatch and the wave vectors of the pump and the daughter Wavg\éhe,n| w?= Cz,kz(xl) @ §| . The results of our d.lr.eCt nu-
vsx. (b) The nonlinearity parameter€® (the adiabatic theopyand merical solution of Eq(52) with this boundary copdmon and
«'2 [the direct numerical solution of E2)] of the daughter wave fOr the same parameters as for the slow equations above are
vsx. The two parameters are indistinguishable within the thicknes@ISO presented in Fig. (). In addition to «*=0.5(1
of the line in the figure. The transitior® -1 at largex indicates +Al/w2), in this figure, we showx'2=0.5(1+A"/w3),
the approach to the square wave solution. where the numerically evaluated functioA’E<O.5(ut2
_ . - —c?u?)— w3 cosu)y, is used with the averaging taken over
The system of slow equatiort42) and (49) for this case is  one temporal oscillation, i.e., during the perioa/2». This
0 0 ~a 0 ~a a . function corresponds to the energy variablein the adia-
(LiaT LG AAF Ll G 9Pyt Gy) =eab sin @, batic theory. ImportantlyA’ and A are indistinguishable
(54 within the line thickness in Fig. (b), illustrating the accu-
_ca _ racy of our adiabatic theory.
©=CHAPX) ko, ©9 At this point, we include the nonlinearity of the pump and
and the explicit slowx dependence oB%(A,®,x) is due to  its self-consistent evolution due to the coupling with the

b=b(x). This system must be solved in combination with daughter wave, i.e., we consider the full system of the slow
evolution equation$49), (50) and(51). Figures 2a) and 2b)
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FIG. 1. Spatial autoresonance in the solution of the sine-Gordo
equation driven by a prescribed eikonal pump waegThe phase

M E=constx), (56) present the results obtained by solving these equations nu-
merically. We choose some of the relevant parameters in this
M 9=0. (570 example as in Fig. 1, i.e.c=1, w,=1, wi=w’—(1

o . +ax)? (e=2.510%), and £=0.05, butw=1.44 and the
Recall that the pump wave is linear, by assumption, andboundary conditions(at x,=—1000 are A(x;)=—0.99,
therefore, Eqs(56) and (57) -describe an eikonal wave B(x;) = — 0.5, and®(x,)=0. One can see in the figure that,
=b(x)cod(x)—wt] of amplitude b and wave vectork  4gain, after the initial excitation stage, the system settles
=dylx satisfying the local dispersion relatiot?k§(X)  yond x~—500 in the spatially autoresonant regime, in
= w? — w §(x) [this relation is equivalent to E¢57)] and the  which the phase mismatch oscillates around its slowly vary-
action flux conservation lawb?=constk) [the linear limit  ing average autoresonant value. Nonetheless, Figs. 1 and 2
of Eq. (56)]. Thus we have all the necessary information ondiffer by a considerable depletion of the pump wave during
the pump wave for solving Eq$54) and (55). Figures 1a)  the interaction, so, for example, at=0 the self-consistent
and Xb) present the results of the numerical solutions oftheory predicts a-50% reduction ofc® as compared to the
these equations for the phase mismatchnd the nonlinear-  decoupled pump wave case. The autoresonance continues
ity parameterx® of the daughter wave in the cases 1, ®  beyond thex=0 point, until the amplitude of the pump wave
=1.35,0,=1, wi=0?—(1+ax)? (a=2.5x10"%), ande  becomes so small that a phase detrapping pro@esmsite
=0.05, and boundary conditiorfat x;,=—1000 b(x;)=1, to the phase trapping stage in the initial interaction region
A(x4)=—0.981, andb(x;)=0. One can see in Fig(d) that  takes place and the roles of the pump and daughter waves are
beyond the initial excitation regiorx(<x<—500) the sys- interchanged. In this detrapping stage, the pump wave com-
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evolution of the pump wave, the investigation of the stability

e 01 (@) | of the complete daughter-pump wave system, and the dem-
- 0.05 onstration of the autoresonance in the case of weakly
) 0 coupled sine-Gordon equations.

g We have shown that the autoresonant interaction of
2-0.05 - coupled nonlinear waves involves three stages. The first
= ; .
w04} J stage proceeds at the boundary of the region of interest,
2 where one launches a quasiuniform pump wave train toward
& 015 the region where it resonates with an initially linear daughter

wave (typically this region is a three-dimensional surface in

0.2 - : s
-1000 -500 COORD(I)NATE 500 1000 four-dimensional space-timeThis is theinitial excitation
X stage, where the daughter wave is small and the pump wave

05 can be treated as propagating independently in the adiabati-
(b) cally varying medium. At the linear resonance surface the

047 um ] daughter wave is excited and, under certain conditions, the

A Rave alaaL\J/%hter ] system enters thautoresonant interactiorstage. Here the

two waves are globally phase locked and automatically ad-
just their amplitudes to preserve the nonlinear resonance
condition. The autoresonance needs both the adiabatically
and a sufficient nonlinearity of the coupled wayesge in-
equalities(36) and(39)]. Finally, as the energy density of the
0 ‘ , ) autoresonant daughter wave increases, the pump wave may
-1000 -500 0 500 1000 be strongly depleted and thphase detrappingrocess takes
COORDINATE, x place. In this, phase detrapping stage the roles of the pump
and the daughter waves are interchanged, the pump wave

FIG. 2. Self-consistent, spatially autoresonant evolution of thegradually vanishes, and the growth of the daughter wave
solutions of linearly coupled sine-Gordon equatio@.The phase  gatyrates as it propagates independently in the medium be-
mismatch v. (b) The nonlinearity parameters of the daughter andyond the phase detrapping region.
pump waves vs. Three distinct stages of interaction in the figure © \y/e have illustrated our theory by examples of the spatial
are the initial excitation stagex —500), the autoresonant stage autoresonance in a driven sine-Gordon equation case and in
(~500<x<500), and the phase detrapping and saturation stageg,e gystem of coupled sine-Gordon equations. The predic-
(x>500). tions of our adiabatic theory in the former example were
found in an excellent agreement with the results of the direct
numerical solutions, providing an indirect test of the appli-
Enc\bility of the adiabatic theory in the self-consistent problem
of autoresonance of coupled nonlinear waves.

The present theory is general in the sense that it is appli-
cable to resonant interactions of weakly coupled nonlinear
V. CONCLUSIONS waves described by the variational principle with adiabati-

ally varying parameters. Nonetheless, Lagrandg@&ncon-
Sidered in this study was restricted to waves described by

ing parameters. The autoresonant solutions for the interac'?’—econd order PDE's. We pl_an.to generalize this theo_ry to
ing waves comprise two coexisting locally quasiuniform study the autoresonant excitation _and cqntrol of _nonlmear
wave train solutions for formally decoupled daughter angvaves described by higher order differential equations.
pump waves, which at the same time are globally phase ACKNOWLEDGMENTS

locked in an extended region of space-time.
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prises a small amplitud@inear wave driven by a large am-

enters the detrapping stagexat + 500 and the growth of the
daughter wave saturates shortly beyond this point.

We have studied the problem of autoresonance of weakl
coupled nonlinear waves with adiabatically space-time vary
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