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Autoresonance of coupled nonlinear waves

L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 11 April 1997!

Adiabatic passage of weakly coupled nonlinear waves with space-time varying parameters through reso-
nance is investigated. Slow evolution equations describing this wave interaction problem are obtained via
Whitham’s averaged variational principle. Autoresonant solutions of these equations are found and, locally,
comprise adiabatically varying quasiuniform wave train solutions of the decoupled problem. At the same time,
the waves are globally phase locked in an extended region of space-time despite the variation of the system’s
parameters. Conditions for entering and sustaining this multidimensional autoresonance are the internal reso-
nant excitation of one of the coupled waves and sufficient adiabaticity and nonlinearity of the problem. These
conditions have their origin in a similar adiabatic resonance problem in nonlinear dynamics. The theory is
illustrated by an example of the autoresonance in a system of coupled sine-Gordon equations.
@S1063-651X~98!00503-0#

PACS number~s!: 03.40.Kf, 52.35.Mw
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I. INTRODUCTION

Resonant interactions of waves with adiabatically vary
parameters are of interest in plasma physics, nonlinear
tics, acoustics, etc. The simplest example is the linear m
conversion in space-time varying media, taking place wh
an externally launched eikonal wave passes a region whe
resonates with another weakly coupled linear wave. The
ond wave is excited in the resonant region, but then
couples from the original wave because of the nonuniform
and/or time dependence of the background and the
waves propagate independently outside the resonant re
The linear mode conversion has been studied in the pa
the context of waves in ionospheric plasmas@1# and, more
recently, is used as one of the principal plasma hea
mechanisms@2#. Mathematically more complex than linea
mode conversion but, nevertheless, very important in ap
cations, are three-wave resonant interactions in adiabatic
varying media@3#. In this case a triad of waves interac
resonantly in a localized region of space-time via a quadr
~in terms of the wave amplitudes! nonlinear coupling term,
while, typically, the decoupled waves are viewed as line
Recently, it was shown that if, in addition to the variation
the parameters, one includes the nonlinear dispersion o
resonantly interacting waves, there exists a possibility of
tering a newautoresonantregime in the mode conversio
and three-wave interaction processes@4#. In autoresonance
the coupled waves tend to stay in resonance in an enla
region of space-time. The broadening of the resonant reg
is accompanied by an automatic self-adjustment of the w
amplitudes, allowing the continuation of the phase lock
between the waves despite the variation of system’s par
eters. The autoresonance of nonlinear waves is the sp
time generalization of the autoresonance in nonlinear dyn
ics, where, in early studies, the phenomenon was use
particle accelerators@5# and, recently, in other dynamica
problems@6#, as well as in the atomic@7# and plasma physics
@8#. The autoresonance is well understood in general dyna
cal systems with one degree of freedom. Nevertheless,
wave autoresonance theory of Ref.@4# was limited to study-
571063-651X/98/57~3!/3494~8!/$15.00
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Recently, a further theoretical progress was achieved

showing the existence of the autoresonant solutions fo
large class of driven,fully nonlinear waves@9#. A typical
example is the driven sine-Gordon equation~the case consid-
ered in detail in Ref.@9#!

utt2c2uxx1v0
2 sin u5«v, ~1!

where c and v0 may vary adiabatically,«!1 is a small
dimensionless coupling parameter, andv5b cos(c1c0) is a
given eikonal driving~pump! wave andb(x,t), c(x,t) and
c0(x,t) are the amplitude, phase, and phase modulation
the pump, respectively. One also assumes thatb, the fre-
quencyv(x,t)[2c t , the wave vectork(x,t)[cx , andc0
are adiabatically varying functions of space-time. It w
shown in Ref. @9# that, under certain conditions, the a
toresonance in this driven system proceeds as the pump w
v passes the space-time region@a strip around a line in the
(x,t) plane# where it resonates with the linear daughter wa
described by the left-hand side of Eq.~1!. The theory of Ref.
@9# was not limited to Eq.~1!, but described a larger class o
driven multidimensional nonlinear systems given by t
variational principle

duS E E L dx dtD50, ~2!

where the Lagrangian was of the form

L5L~ut ,ux ,u,q!1«vu, ~3!

andq(x,t) represented a set of adiabatically varying para
eters, whilev was the aforementioned eikonal pump wav
Lagrangian ~3! yields the following variational evolution
equation for the daughter waveu(x,t):

] t~Lut
!1]x~Lux

!2Lu5«b cosc. ~4!

The progress in the theory of the autoresonance in syst
described by Eq.~4! was achieved by developing the ave
3494 © 1998 The American Physical Society
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57 3495AUTORESONANCE OF COUPLED NONLINEAR WAVES
aged variational principle for studying the autoresonant w
interactions@9#. Nevertheless, this theory was still limited
the prescribed pump wave case only.

In the present work we shall include the self-consist
autoresonant evolution of the pump wave. We shall assu
that the complete pump-daughter wave system is descr
by the variational principle~2!, but now v is a dependen
field variable, and

L5L~ut ,ux ,u,q!1M ~v t ,vx ,v,r !1«uv. ~5!

Here M (v t ,vx ,v,r ) is the Lagrangian of the unperturbe
pump wave,r (x,t) is a slow parameter, and the interactio
term «uv describes a weak linear coupling. Lagrangian~5!
yields the following coupled evolution equations:

] t~Lut
!1]x~Lux

!2Lu5«v,
~6!

] t~M v t
!1]x~M vx

!2M v5«u.

Our goal is to find autoresonant solutions in this system,
a situation when an externally launched pump wave exc
the daughter wave as they resonate inside the space
region of interest, while after the excitation the waves pro
gate phase locked in an extended region of space-time.
self-consistent description of the evolution of the waves
the autoresonance and the study of the stability of the
toresonant interaction are the main targets of this work. O
presentation will be as follows. In Sec. II we shall apply t
averaged variational principle idea in deriving the slow ev
lution equations for studying the autoresonance in
coupled phase locked daughter-pump wave system.
boundary conditions and the process of trapping into
resonance~the initial excitation stage! will also be discussed
in Sec. II. Section III will deal with the autoresonant sol
tions of the slow evolution equations. An application of o
theory to the case of coupled sine-Gordon equations and
merical examples will be presented in Sec. IV. Finally, S
V gives our conclusions.

II. SLOW EQUATIONS FOR PHASE-LOCKED WAVES

The averaged variational principle for studying slo
modulations of nonlinear waves was developed by Whith
@10#, and Ref.@9# comprised an application of a similar ap
proach to driven autoresonant waves. Many details of
developments for studying the autoresonant evolution of
complete daughter-pump wave system are similar to thos
Ref. @9#. Thus we shall skip these details in the pres
theory. We proceed by introducing the two-scale represe
tions @9,10# of the solutions of Eq. ~6!, i.e., u(x,t)
5U@u(x,t),X,T# and v(x,t)5V@c(x,t),X,T#, where X
[«x andT[«t ~« is viewed as the largest small parame
in the problem!, and we assume the periodicity ofU andV
with respect to the fast phase variablesu andc. The rationale
beyond these representations is the expectation of ha
solutions of the coupled problem which, locally~on the fast
variation scale!, comprise quasiuniform wave train solution
for the decoupled waves, but, at the same time, involve a
batic modulations on the slow scale (X,T) because of the
presence of the weak coupling and the adiabatic variation
the system’s parameters. By expanding in Fourier seriesU
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5(nan exp(inu) and V5(nbn exp(inc), substituting these
expansions into the right-hand side of Eqs.~6!, and leaving
only then51 terms for simplicity, i.e., focusing on the fun
damental resonance problem, we obtain

] t~Lut
!1]x~Lux

!2Lu5«b cos~c1c0!,

] t~M v t
!1]x~M vx

!2M v5«a cos~u1u0!, ~7!

wherea, b5ua1u,ub1u, and u0 ,c05Arg(a1 ,b1). Note that
each of the equations in Eq.~7! has the same form as Eq.~4!
studied in Ref.@9#. Therefore, the solution of the couple
system can proceed along the lines similar to those outli
in that work.

We seek globally phase locked solutions for the coup
waves, i.e., write u5f(x,t)1Q(X,T) and c5f(x,t)
1C(X,T)5u2Q1C, wheref is the rapidly varying part
of the phases~assumed to bethe samefor both waves, which
is the phase locking assumption!, while Q and C represent
boundedmodulations. We shall also assume that the f
quencyv52f t and the wave vectork5fx associated with
f are slowly varying and smooth, whileQ and C oscillate
and scale withx and t as Q5Q(«1/2x,«1/2t) and C
5C(«1/2x,«1/2t) ~see below!. Note, at this stage, that w
have introduced three phasesf, Q, andC, instead of the two
original angle variablesu and c. Therefore, we have the
freedom of adding an additional constraint. We shall use
freedom later. Now, we further exploit the similarity be
tween the equations in Eq.~7! in the self-consistent problem
and Eq. ~4! for the prescribed pump case. The latter w
studied in Ref.@9# via the averaged variational principle, an
here, for completeness, we present a brief derivation of
slow autoresonant evolution equations in this theory. T
idea was based on the possibility of replacing the origi
principle ~2! by an equivalent variational principle@10#

dS E E ^L&dX dTD50, ~8!

where ^L&[(2p)21*0
2pL du is the Lagrangian average

over one period of the fast phase variable, holding the s
variablesX andT fixed. To first order in«,

^L&5L01«ab cos~Q1u02c0!1a, ~9!

where the zero order averaged Lagrangian

L05L0~A,k1Qx ,v2Q t ,q! ~10!

is calculated by using the uniform wave train solutions of t
unperturbed nonlinear wave problem with constant para
eters having the same values as in our exact problem at g
X andT. Note thatk andv in Eq. ~10! are those of the pump
wave, whileA is the energy variable of the wave train@9#.
The small terma in Eq. ~9! involves space-time derivative
of the slow parameters of the wave train solution and n
not be specified. An approximate form of Eq.~10!, L0

'L0(A,k,v,q)1Lk
0(A,k,v,q)Qx2Lk

0(A,k,v,q)Q t , was
used in Ref.@9# in the variational principle. However, be
cause of the above-mentioned special scaling ofQ with x
and t, we haveQx,t;O(«1/2) and, toO(«), we must also
include the terms withQx

2,Q t
2 and QxQ t in approximating
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3496 57L. FRIEDLAND
L0 in the variational principle. Alternatively, in this work, w
shall postpone the expansion until analyzing the stability
the variational evolution equations~see Sec. III!. This is an
important improvement of the previous theory. The avera
Lagrangian~9! is a function ofslowvariables and parameter
A, Q, k, v, andq only. Therefore, by taking the variations i
Eq. ~8! with respect to the dependent field variablesA andQ,
we obtain the following system of slow evolution equation

Lvt
0 2Lkx

0 52«ab sin F, ~11!

LA
05«aAb cosF1g, ~12!

whereF5Q1u02c0 , while g @similarly to a in Eq. ~9!# is
a small function involving the space-time derivatives of va
ous slow parameters in the problem, and plays a neglig
role in the autoresonance@9# and, thus, will be omitted in the
following. Finally, note thatLv

0 and 2Lk
0 in Eqs. ~11! and

~12! are the action and the action flux densities of the wa
train solution for the daughter wave@10#, but one evaluates
these objects at slightlyshiftedlocal v andk values associ-
ated with the pump.

Now we generalize the theory to include the se
consistent evolution of the pump wave. As mentioned abo
each of the two equations in Eq.~7! has a form similar to Eq.
~4!. On the other hand, toO(«), Eq. ~4! can be replaced by
a pair of slow evolution equations~11! and ~12!. Therefore,
to the same order, Eqs.~7! for the self-consistent problem
can be replaced by a system of two pairs of slow evolut
equations@compare to Eqs.~11! and ~12!#

Lvt
0 2Lkx

0 52«ab sin F, ~13!

LA
05«aAb cosF, ~14!

Mvt
0 2Mkx

0 5«ab sin F, ~15!

MB
05«abB cosF, ~16!

where F[Q2C, while L05L0(A,k1Qx ,v2Q t ,q) and
M05M0(B,k1Cx ,v2C t ,r ) are the averaged Lagrangian
of the decoupled daughter and pump waves, respectiv
andB is the energy variable~the analog ofA! parametrizing
the wave train solutions for the decoupled pump wave. F
thermore, we have omitted the irrelevant small terms@the
analogs ofg in Eq. ~12!# in the right-hand side of Eqs.~14!
and ~16! ~see the remark in the previous paragraph! and in-
cluded, at this point,u0 andc0 in the definitions ofQ andC.
Finally, we observe that Eqs.~13! and~15! yield the conser-
vation law ~the Manley-Rowe relation!

~Lv
0 1Mv

0 ! t2~Lk
01Mk

0!x50. ~17!

At this stage, we discuss the boundary conditions. T
latter must be consistent with the slow evolution and ph
locking assumptions. We shall be focusing on theinternal
daughter wave excitation problem, i.e., on the situation w
a large amplitude pump wave is launched at the boundar
the region of interest, while the amplitudea of the daughter
wave on the boundary is negligible. Thena will remain
small until the daughter wave resonates with the pump wa
Consequently, in the region between the boundary and u
f
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the pump wave reaches the resonance~the initial excitation
region in the following! one can neglect the interaction term
in Eqs.~15! and ~16! for the pump wave, i.e., write

Mvt
0 2Mkx

0 50, ~18!

MB
050. ~19!

Next, we use the above-mentioned freedom of prescrib
one of the phasesf, C or Q, and setC5const in the initial
excitation region, so, in Eqs.~18! and ~19!,

M05M0~B,k,v,r !. ~20!

One can identify Eqs.~18! and~19! with the usual system o
slow evolution equations for the energy densityB and phase
f of the adiabatically varying wave train solution for th
pump wave@10#. This is a pair of coupled partial differentia
equations~PDE’s!, and we shall assume that the solutio
B5B(x,t), and f5f(x,t) @and, therefore, alsok5k(x,t)
and v5v(x,t)# of these equations are known. In oth
words, the pump wave isprescribedin the entire initial ex-
citation region.

Now we discuss the initial excitation of the daught
wave. The latter is described by Eqs.~13! and~14!, where, of
course, one cannot neglect the coupling term. Neverthel
if one starts at the boundary, where the amplitude of
daughter wave is small by assumption, one can use
above-mentioned decoupled pump wave solution in solv
Eqs. ~13! and ~14! in the initial excitation region, so the
initial excitation stage of the daughter wave reduces to t
studied in Ref.@9#. It was shown in that work that the solu
tion for the daughter wave in this region is as follows. Sta
ing at the boundary, the driven daughter wave enters
strong phase trapping stage, in which its amplitude is s
small, but the phase differenceF5Q2C ~mod 2p! be-
comes near either 0 orp. This phase locked small amplitud
~linear! driven wave propagates until it reaches the resona
line in the (x,t) plane determined by the equation

D@v~x,t !,k~x,t !,q~x,t !#;LA
050. ~21!

Here D is the linear dispersion function characterizing t
small amplitude daughter wave in the decoupled proble
and is evaluated at local values of the frequency and w
vector of the adiabatically varying pump wave. Thus, inde
the daughter and pump wavesresonateon the line given by
Eq. ~21!. In the vicinity of this resonance line an efficien
excitation of the daughter wave takes place and, under
tain conditions, the daughter wave may enter the autore
nant interaction stage@9#. As the amplitude of this wave
increases beyond the resonance line, one may also exp
violation of the prescribed pump wave assumption. Our n
goal is to remove this assumption, i.e., to consider the
system of Eqs.~13!–~16! in the autoresonant interactio
stage. Note that the amplitudes and phases of the two w
are already known on the resonance line, so one can v
this line as anew boundaryin the problem. Also, beyond the
linear resonance line, the daughter wave amplitude is la
and one can remove theO(«) interaction terms in Eqs.~14!
and ~16! in studying the autoresonant evolution stage.
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57 3497AUTORESONANCE OF COUPLED NONLINEAR WAVES
III. AUTORESONANT SOLUTIONS

In this section, we seek autoresonant-type solutions of
evolution equations~13!–~16! beyond the resonance line
i.e., write (A,B,Q,C)5(Ā,B̄,Q̄,C̄)1(dA,dB,dQ,dC),
splitting thesmoothaverages fromsmall oscillating compo-
nents. By separating the averaged and the oscillating par
Eqs.~13!–~16!, we have

~ L̄ vA
0 ] t2L̄ kA

0 ]x!Ā5ba2«āb̄ F̄, ~22!

~M̄ vB
0 ] t2M̄ kB

0 ]x!B̄5bb1«āB̄ F̄, ~23!

~ L̄ vA
0 ] t2L̄ kA

0 ]x!Q̄'L̄ A
0, ~24!

~M̄ vB
0 ] t2M̄ kB

0 ]x!C̄'M B
0 ~25!

and

~ L̄ vA
0 ] t2L̄ kA

0 ]x!dA2~ L̄ vv
0 ] t

21L̄ kk
0 ] x

222L̄ vk
0 ] t]x!dQ

52«āb̄~dQ2dC!, ~26!

~M̄ vB
0 ] t2M̄ kB

0 ]x!dB2~M̄ vv
0 ] t

21M̄ kk
0 ] x

222M̄ vk
0 ] t]x!dC

5«ā b̄~dQ2dC!, ~27!

~ L̄ vA
0 ] t2L̄ kA

0 ]x!dQ'L̄ AA
0 dA, ~28!

~M̄ vB
0 ] t2M̄ kB

0 ]x!dC'M̄ BB
0 dB, ~29!

where~•••! means evaluations atv, k, Ā, andB̄; the average
phase differenceF̄5Q̄2C̄ is assumed to be small, andba

[L̄ kx
0 2L̄ vt

0 andbb[M̄ kx
0 2M̄ vt

0 . Next, we use the freedom
of choosing one additional constraint on the variablesf, Q,
and C beyond the resonance line. We recall thatC is con-
stant on the resonance line~the new boundary in the prob
lem!, and impose the constancy ofC̄ in the autoresonan
region, so, from Eq.~25!,

M̄ B
0[0. ~30!

This relation can be viewed as an algebraic equation defin
B̄5B̄(v,k). Furthermore, toO(«), Eq. ~24! yields

L̄ A
0'0, ~31!

which gives the lowest order approximation forĀ
5Ā(v,k). On the other hand, by adding Eqs.~22! and~23!,
one obtains the averaged Manley-Rowe relation

~ L̄ vA
0 ] t2L̄ kA

0 ]x!Ā1~M̄ v
0 ] t2M̄ kB

0 ]x!B̄5ba1bb .
~32!

This equation, upon substitution ofĀ(v,k) and B̄(v,k) de-
termined above, can be viewed as a PDE forv andk, and, in
combination with the consistency condition

] tk1]xv50, ~33!

yields a complete system of two first order PDE’s for slow
varyingv andk in our problem. The solution of this system
e

in

g

requires integration along the characteristics originating
the boundary of the autoresonant region~the linear resonance
line!. After finding v andk we determineĀ and B̄ via ~30!
and ~31!. These solutions can be also used in checking
assumption of the smallness ofF̄, via, say, Eq.~22!. Finally,
we observe that in contrast to the multidimensional ca
finding the averaged energy densitiesĀ and B̄ in one-
dimensional situations involves solutions of algebraic eq
tions only. Indeed, suppose one treats a stationary~constant
v! problem, where the slow parametersq andr depend onx
only. Then Eq.~17! yields,L k

01M k
05const. The part of this

equation averaged over the autoresonant oscillations in c
bination with Eqs.~30! and ~31! comprise a set of algebrai
equations forĀ, B̄, andk as functions ofx.

As the final step in our theory, we proceed to the oscill
ing autoresonant components described by Eqs.~26!–~29!.
Since, at this stage, the adiabatic averagesĀ and B̄ are al-
ready known, these equations comprise a set of homo
neous, linear, first order PDE’s with slowly varying coef
cients. Therefore, the oscillating components can be fo
by using the usual multidimensional WKB approximatio
@11#. We shall not describe the details of this method he
and focus only on finding the frequencyn and the wave
vectork of the autoresonant oscillations. To lowest order
the WKB approximation, Eqs.~26!–~29! become

iSadA2CadQ5«ā b̄~dQ2dC!,

iSbdB2CbdC52«ā b̄~dQ2dC!,
~34!

iSadQ1RadA50,

iSbdC1RbdB50,

whereSa5nL̄ vA
0 1kL̄ kA

0 , Sb5nM̄ vB
0 1kM̄ kB

0 , Ca[L̄ vv
0 n2

1L̄ kk
0 k212nkL̄ vk

0 , Cb[M̄ vv
0 n21M̄ kk

0 k212nkM̄ vk
0 , Ra

5L̄ AA
0 , andRb5M̄ BB

0 . System~34! yields the local disper-
sion relation forn andk,

DaDb1«ā b̄~Da1Db!50, ~35!

where Da,b[Ca,b2(Sa,b)2/Ra,b. One can use this relation
for evaluatingn andk in the region of interest by integratin
along the characteristics~the rays of the WKB theory! origi-
nating on the linear resonance line. Note that the dispers
relation~35! is real, yielding real ray equations and, in tur
real solutions forn and k in the parts of the autoresonan
region accessible by the rays. This guarantees the stabilit
the autoresonant oscillationsdA, dB, dQ, and dC in the
accessible region. Note that our stability analysis simplifi
significantly in one-dimensional, stationary~constant v!
problems~we have discussed the question of findingĀ andB̄
in this situation earlier!. In these problems, we seek tim
independent solutions for the oscillating autoresonant co
ponents and, thus, setn50 in Eq. ~35!, yielding a simple
stability condition «ā b̄(dadb)21(da1db).0, where da

[L̄ kk
0 2(L̄ kA

0 )2/L̄ AA
0 anddb[M̄ kk

0 2(M̄ kB
0 )2/M̄ BB

0 . Also, in
stationary problems, our original system of slow evoluti
equations reduces to a set of ordinary differential equati
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3498 57L. FRIEDLAND
~ODE’s!, and we shall use this simplified system in the n
merical applications in Sec. IV.

Finally, we discuss the validity conditions for our a
proximations. We observe that, if one denotes bys (s!1)
the dimensionless adiabaticity parameter characterizing
space-time variation ofr andq in the problem, thenba,b in
Eq. ~32! are ofO(s). Then Eq.~32! shows that the adiaba
ticity parameter characterizingv andk and, in turn,Ā andB̄
are also ofO(s). As the result, Eq.~22! @or Eq.~23!# yields
F̄;O(s/«). Therefore, our assumptionF̄!1 requires

s/«!1. ~36!

On the other hand, according to Eq.~35!, n andk scale as

n,k;O~«1/2!, ~37!

~this is the characteristic autoresonant scaling mentio
above!. Then, from Eqs.~34!,

DA;~Sa/Ra!dQ;«1/2, dB;~Sb/Rb!dC;«1/2,
~38!

and the smallness of« appears to guarantee the validity
our first order expansions in powers ofdA, anddB, i.e., the
validity of

dA/A;Sa/~ARa!!1, dB/B;Sb/~BRb!!1. ~39!

Nevertheless, these conditions also require a sufficient n
linearity. Indeed, the functionsSa,b in Eq. ~39! involve first
derivatives of the Lagrangians with respect to the ene
densitiesA andB, while Ra,b are the second derivatives o
the Lagrangians. But, in linear problems, the Lagrangian
proportional to the energy density, soRa,b vanish and one
cannot satisfy Eq.~39!. Therefore, in the autoresonance,
least one of the waves must be sufficiently nonlinear. T
completes our discussion of the self-consistent autoreso
evolution and the stability of the complete pump-daugh
wave system.

IV. EXAMPLE: WEAKLY COUPLED SINE-GORDON
EQUATIONS

In this section we illustrate our theory by studying a on
dimensional example of the autoresonant evolution of
solutions of two coupled sine-Gordon equations

utt2c2uxx1v a
2 sin u5«v, ~40!

v tt2c2vxx1v b
2~x!sin v5«u, ~41!

whereva is constant, whilevb(x) is a slowly varying func-
tion of position. We shall consider the boundary value pro
lem in which only the pump wavev is excited at some poin
x1 and has a form of a wave trainv(x1 ,t)
5V@c(x1 ,t),B(x1)# with a given time dependenc
c(x1 ,t)5C2vt and energy parameterB(x1). The daughter
wave, in contrast, is assumed to be negligible atx1 . The
slow evolution equations~13!–~16!, in this one-dimensiona
problem, become

L kx
0 5«ab sin F, ~42!
-
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L A
05«aAb cosF, ~43!

M kx
0 52«ab sin F, ~44!

M B
05«aba cosF, ~45!

where, for the sine-Gordon case@9#,

L05~v22c2k a
2!1/2Ja2A,

~46!

M05~v22c2k b
2!1/2Jb2B,

ka[k1Qx , kb[k1Cx and

Ja,b58va,bp21@E~p/2,ka,b!2~12ka,b!F~p/2,ka,b!#,
~47!

formally, are the actions of the nonlinear oscillators of en
gies A and B described by the equationsutt5v a

2 sinu and
utt5v b

2 sinu, respectively@12#. FunctionsE and F in Eq.
~47! are elliptic integrals of the first and second kind, wh
ka50.5(11A/v a

2) and kb50.5(11B/v b
2). Furthermore

@9#, in Eqs.~42!–~45!,

~a,b!54g1/2~11g!21, ~48!

where g5exp@2(pF8/F)# and F85F(p/2;12k), and one
substitutesk5ka or kb in evaluatinga or b, respectively.
The parameterska,b (0<ka,b<1) characterize the degree o
the nonlinearity of the daughter and the pump waves@9#, and
smallk values correspond to the linear case~where the wave
amplitude is 2k1/2!, while, ask→1, one approaches the sol
tary wave solution of the sine-Gordon equation.

Next, we observe that the algebraic equations~43! and
~45! allow one to expresska andkb via A, B, and cosF, i.e.,
we write explicit relationska,b5Ga,b(A,B,F,x), where the
slow x dependence enters because ofvb5vb(x). Then,
since, formally,L05L0(ka ,A) and M05M0@kb ,B,vb(x)#,
one can rewrite Eqs.~42! and ~44! as

~L kA
0 1L kk

0 G A
a !Ax1L kk

0 ~G B
aBx1G F

a Fx1G x
a!

5«ab sin F, ~49!

~M kA
0 1M kk

0 G B
b !Bx1M kk

0 ~G A
bAx1G F

b Fx1G x
b!1M kx

0

52«ab sin F. ~50!

These two equations, in combination with

Fx5ka2kb5Ga~A,B,F,x!2Gb~A,B,F,x!, ~51!

comprise a complete set of ODE’s forA, B, andF.
Now we proceed to our numerical examples. First,

illustrate the possibility of excitation of spatially autores
nant solution for the daughter wave in the case when
neglects the nonlinearity and the coupling in treating
pump wave, i.e., replaces the system of equations~40! and
~41! by

utt2c2uxx1v a
2 sin u5«v, ~52!

v tt2c2vxx1v b
2~x!v50. ~53!
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The system of slow equations~42! and ~49! for this case is

~L kA
0 1L kk

0 G A
a !Ax1L kk

0 ~G F
a Fx1G x

a!5«ab sin F,
~54!

Fx5Ga~A,F,x!2kb , ~55!

and the explicit slowx dependence ofGa(A,F,x) is due to
b5b(x). This system must be solved in combination with

M k
05const~x!, ~56!

M B
050. ~57!

Recall that the pump wave is linear, by assumption, a
therefore, Eqs.~56! and ~57! describe an eikonal wavev
5b(x)cos@c(x)2vt# of amplitude b and wave vectork
5]c/]x satisfying the local dispersion relationc2k b

2(x)
5v2 2v b

2(x) @this relation is equivalent to Eq.~57!# and the
action flux conservation lawkb25const(x) @the linear limit
of Eq. ~56!#. Thus we have all the necessary information
the pump wave for solving Eqs.~54! and ~55!. Figures 1~a!
and 1~b! present the results of the numerical solutions
these equations for the phase mismatchF and the nonlinear-
ity parameterka of the daughter wave in the casesc51, v
51.35,va51, v b

25v22(11ax)2 (a52.531024), and«
50.05, and boundary conditions~at x1521000! b(x1)51,
A(x1)520.981, andF(x1)50. One can see in Fig. 1~a! that
beyond the initial excitation region (x1,x,2500) the sys-

FIG. 1. Spatial autoresonance in the solution of the sine-Gor
equation driven by a prescribed eikonal pump wave.~a! The phase
mismatch and the wave vectors of the pump and the daughter w
vs x. ~b! The nonlinearity parameterska ~the adiabatic theory! and
k8a @the direct numerical solution of Eq.~52!# of the daughter wave
vs x. The two parameters are indistinguishable within the thickn
of the line in the figure. The transitionka→1 at largex indicates
the approach to the square wave solution.
d,

f

tem settles in the spatially autoresonant regime, where
phase mismatch remains small and oscillates~these are the
characteristic stable autoresonant oscillations descr
above! around a slowly varying average value. The autore
nance effect can be also illustrated by comparing the w
vector of the pump wave (k511ax) to that of the nonlinear
daughter wave given by the local dispersion relationL A

0

50. We make this comparison in the small frame in F
1~a!. One observes that beyondx'2500, the wave vectors
of the two waves remain almost the same, i.e., the amplit
of the nonlinear daughter wave self-adjusts so that the w
stays in an approximate resonance with the pump. Fina
the approach ofkb to unity indicates the transition to th
limiting square wave solution for the daughter wave asx
increases. In order to test our adiabatic theory we also
formed direct numerical solutions of Eq.~52! with the pre-
scribed eikonal pump wave. We used a standard spe
method@13# in our numerical tests, and confirmed the acc
racy of the method by doubling the number of harmon
used in the calculations and by reducing twice the spa
integration step. We used matched boundary condition fou,
i.e., u(x1 ,t)5«v(x1 ,t)/@v22c2k2(x1)2v a

2#. This bound-
ary condition guarantees smooth excitation of the daug
wave and corresponds to the case of a vanishing solutio
one moves further away from the linear resonance line,
whenuv22c2k2(x1)2v a

2u→`. The results of our direct nu
merical solution of Eq.~52! with this boundary condition and
for the same parameters as for the slow equations above
also presented in Fig. 1~b!. In addition to ka50.5(1
1A/v a

2), in this figure, we showk8a50.5(11A8/v a
2),

where the numerically evaluated functionA8[^0.5(u t
2

2c2u x
2)2v a

2 cosu&av is used with the averaging taken ov
one temporal oscillation, i.e., during the period 2p/v. This
function corresponds to the energy variableA in the adia-
batic theory. Importantly,A8 and A are indistinguishable
within the line thickness in Fig. 1~b!, illustrating the accu-
racy of our adiabatic theory.

At this point, we include the nonlinearity of the pump an
its self-consistent evolution due to the coupling with t
daughter wave, i.e., we consider the full system of the s
evolution equations~49!, ~50! and~51!. Figures 2~a! and 2~b!
present the results obtained by solving these equations
merically. We choose some of the relevant parameters in
example as in Fig. 1, i.e.,c51, va51, v b

25v22(1
1ax)2 (a52.5 1024), and «50.05, butv51.44 and the
boundary conditions~at x1521000! are A(x1)520.99,
B(x1)520.5, andF(x1)50. One can see in the figure tha
again, after the initial excitation stage, the system settles~be-
yond x'2500! in the spatially autoresonant regime,
which the phase mismatch oscillates around its slowly va
ing average autoresonant value. Nonetheless, Figs. 1 a
differ by a considerable depletion of the pump wave dur
the interaction, so, for example, atx50 the self-consisten
theory predicts a;50% reduction ofka as compared to the
decoupled pump wave case. The autoresonance conti
beyond thex50 point, until the amplitude of the pump wav
becomes so small that a phase detrapping process~opposite
to the phase trapping stage in the initial interaction regi!
takes place and the roles of the pump and daughter wave
interchanged. In this detrapping stage, the pump wave c
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prises a small amplitude~linear! wave driven by a large am
plitude daughter wave. One can see, in Fig. 2, that the sys
enters the detrapping stage atx'1500 and the growth of the
daughter wave saturates shortly beyond this point.

V. CONCLUSIONS

We have studied the problem of autoresonance of wea
coupled nonlinear waves with adiabatically space-time va
ing parameters. The autoresonant solutions for the inter
ing waves comprise two coexisting locally quasiunifor
wave train solutions for formally decoupled daughter a
pump waves, which at the same time are globally ph
locked in an extended region of space-time.

The present work is a generalization of the previo
theory @9# of the autoresonant evolution of nonlinear wav
driven by aprescribedpump wave, and it also uses the a
eraged variational principle. The new ingredients in t
study are the self-consistent inclusion of the autoreson

FIG. 2. Self-consistent, spatially autoresonant evolution of
solutions of linearly coupled sine-Gordon equations.~a! The phase
mismatch vsx. ~b! The nonlinearity parameters of the daughter a
pump waves vsx. Three distinct stages of interaction in the figu
are the initial excitation stage (x,2500), the autoresonant stag
(2500,x,500), and the phase detrapping and saturation sta
(x.500).
s-
m

ly
-

ct-

d
e

s

s
nt

evolution of the pump wave, the investigation of the stabil
of the complete daughter-pump wave system, and the d
onstration of the autoresonance in the case of wea
coupled sine-Gordon equations.

We have shown that the autoresonant interaction
coupled nonlinear waves involves three stages. The
stage proceeds at the boundary of the region of inter
where one launches a quasiuniform pump wave train tow
the region where it resonates with an initially linear daugh
wave ~typically this region is a three-dimensional surface
four-dimensional space-time!. This is the initial excitation
stage, where the daughter wave is small and the pump w
can be treated as propagating independently in the adia
cally varying medium. At the linear resonance surface
daughter wave is excited and, under certain conditions,
system enters theautoresonant interactionstage. Here the
two waves are globally phase locked and automatically
just their amplitudes to preserve the nonlinear resona
condition. The autoresonance needs both the adiabatic
and a sufficient nonlinearity of the coupled waves@see in-
equalities~36! and~39!#. Finally, as the energy density of th
autoresonant daughter wave increases, the pump wave
be strongly depleted and thephase detrappingprocess takes
place. In this, phase detrapping stage the roles of the p
and the daughter waves are interchanged, the pump w
gradually vanishes, and the growth of the daughter w
saturates as it propagates independently in the medium
yond the phase detrapping region.

We have illustrated our theory by examples of the spa
autoresonance in a driven sine-Gordon equation case an
the system of coupled sine-Gordon equations. The pre
tions of our adiabatic theory in the former example we
found in an excellent agreement with the results of the dir
numerical solutions, providing an indirect test of the app
cability of the adiabatic theory in the self-consistent proble
of autoresonance of coupled nonlinear waves.

The present theory is general in the sense that it is ap
cable to resonant interactions of weakly coupled nonlin
waves described by the variational principle with adiaba
cally varying parameters. Nonetheless, Lagrangian~5! con-
sidered in this study was restricted to waves described
second order PDE’s. We plan to generalize this theory
study the autoresonant excitation and control of nonlin
waves described by higher order differential equations.
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